🔥 Load Balancing, Fallbacks, Retries, Timeouts
- Quick Start load balancing
- Quick Start client side fallbacks
Quick Start - Load Balancing
Step 1 - Set deployments on config
Example config below. Here requests with model=gpt-3.5-turbo
will be routed across multiple instances of azure/gpt-3.5-turbo
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/<your-deployment-name>
api_base: <your-azure-endpoint>
api_key: <your-azure-api-key>
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key: <your-azure-api-key>
rpm: 6
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-large
api_base: https://openai-france-1234.openai.azure.com/
api_key: <your-azure-api-key>
rpm: 1440
routing_strategy: simple-shuffle # Literal["simple-shuffle", "least-busy", "usage-based-routing","latency-based-routing"], default="simple-shuffle"
model_group_alias: {"gpt-4": "gpt-3.5-turbo"} # all requests with `gpt-4` will be routed to models with `gpt-3.5-turbo`
num_retries: 2
timeout: 30 # 30 seconds
redis_host: <your redis host> # set this when using multiple litellm proxy deployments, load balancing state stored in redis
redis_password: <your redis password>
redis_port: 1992
Detailed information about routing strategies can be found here
Step 2: Start Proxy with config
$ litellm --config /path/to/config.yaml
Test - Load Balancing
Here requests with model=gpt-3.5-turbo will be routed across multiple instances of azure/gpt-3.5-turbo
👉 Key Change: model="gpt-3.5-turbo"
Check the model_id
in Response Headers to make sure the requests are being load balanced
- OpenAI Python v1.0.0+
- Curl Request
- Langchain
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
]
)
print(response)
Pass metadata
as part of the request body
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}'
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
import os
os.environ["OPENAI_API_KEY"] = "anything"
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000",
model="gpt-3.5-turbo",
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
Test - Client Side Fallbacks
In this request the following will occur:
- The request to
model="zephyr-beta"
will fail - litellm proxy will loop through all the model_groups specified in
fallbacks=["gpt-3.5-turbo"]
- The request to
model="gpt-3.5-turbo"
will succeed and the client making the request will get a response from gpt-3.5-turbo
👉 Key Change: "fallbacks": ["gpt-3.5-turbo"]
- OpenAI Python v1.0.0+
- Curl Request
- Langchain
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(
model="zephyr-beta",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"fallbacks": ["gpt-3.5-turbo"]
}
)
print(response)
Pass metadata
as part of the request body
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "zephyr-beta"",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
"fallbacks": ["gpt-3.5-turbo"]
}'
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
import os
os.environ["OPENAI_API_KEY"] = "anything"
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000",
model="zephyr-beta",
extra_body={
"fallbacks": ["gpt-3.5-turbo"]
}
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
Advanced
Fallbacks + Retries + Timeouts + Cooldowns
Set via config
model_list:
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8001
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8002
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8003
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
api_key: <my-openai-key>
- model_name: gpt-3.5-turbo-16k
litellm_params:
model: gpt-3.5-turbo-16k
api_key: <my-openai-key>
litellm_settings:
num_retries: 3 # retry call 3 times on each model_name (e.g. zephyr-beta)
request_timeout: 10 # raise Timeout error if call takes longer than 10s. Sets litellm.request_timeout
fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo"]}] # fallback to gpt-3.5-turbo if call fails num_retries
context_window_fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}] # fallback to gpt-3.5-turbo-16k if context window error
allowed_fails: 3 # cooldown model if it fails > 1 call in a minute.
cooldown_time: 30 # how long to cooldown model if fails/min > allowed_fails
Context Window Fallbacks (Pre-Call Checks + Fallbacks)
Before call is made check if a call is within model context window with enable_pre_call_checks: true
.
1. Setup config
For azure deployments, set the base model. Pick the base model from this list, all the azure models start with azure/.
- Same Group
- Context Window Fallbacks (Different Groups)
Filter older instances of a model (e.g. gpt-3.5-turbo) with smaller context windows
router_settings:
enable_pre_call_checks: true # 1. Enable pre-call checks
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/chatgpt-v-2
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
model_info:
base_model: azure/gpt-4-1106-preview # 2. 👈 (azure-only) SET BASE MODEL
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo-1106
api_key: os.environ/OPENAI_API_KEY
2. Start proxy
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
3. Test it!
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
text = "What is the meaning of 42?" * 5000
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{"role": "system", "content": text},
{"role": "user", "content": "Who was Alexander?"},
],
)
print(response)
Fallback to larger models if current model is too small.
router_settings:
enable_pre_call_checks: true # 1. Enable pre-call checks
model_list:
- model_name: gpt-3.5-turbo-small
litellm_params:
model: azure/chatgpt-v-2
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
model_info:
base_model: azure/gpt-4-1106-preview # 2. 👈 (azure-only) SET BASE MODEL
- model_name: gpt-3.5-turbo-large
litellm_params:
model: gpt-3.5-turbo-1106
api_key: os.environ/OPENAI_API_KEY
- model_name: claude-opus
litellm_params:
model: claude-3-opus-20240229
api_key: os.environ/ANTHROPIC_API_KEY
litellm_settings:
context_window_fallbacks: [{"gpt-3.5-turbo-small": ["gpt-3.5-turbo-large", "claude-opus"]}]
2. Start proxy
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
3. Test it!
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
text = "What is the meaning of 42?" * 5000
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{"role": "system", "content": text},
{"role": "user", "content": "Who was Alexander?"},
],
)
print(response)
Content Policy Fallbacks
Fallback across providers (e.g. from Azure OpenAI to Anthropic) if you hit content policy violation errors.
model_list:
- model_name: gpt-3.5-turbo-small
litellm_params:
model: azure/chatgpt-v-2
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
- model_name: claude-opus
litellm_params:
model: claude-3-opus-20240229
api_key: os.environ/ANTHROPIC_API_KEY
litellm_settings:
content_policy_fallbacks: [{"gpt-3.5-turbo-small": ["claude-opus"]}]
Default Fallbacks
You can also set default_fallbacks, in case a specific model group is misconfigured / bad.
model_list:
- model_name: gpt-3.5-turbo-small
litellm_params:
model: azure/chatgpt-v-2
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
- model_name: claude-opus
litellm_params:
model: claude-3-opus-20240229
api_key: os.environ/ANTHROPIC_API_KEY
litellm_settings:
default_fallbacks: ["claude-opus"]
This will default to claude-opus in case any model fails.
A model-specific fallbacks (e.g. {"gpt-3.5-turbo-small": ["claude-opus"]}) overrides default fallback.
Test Fallbacks!
Check if your fallbacks are working as expected.
Regular Fallbacks
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-D '{
"model": "my-bad-model",
"messages": [
{
"role": "user",
"content": "ping"
}
],
"mock_testing_fallbacks": true # 👈 KEY CHANGE
}
'
Content Policy Fallbacks
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-D '{
"model": "my-bad-model",
"messages": [
{
"role": "user",
"content": "ping"
}
],
"mock_testing_content_policy_fallbacks": true # 👈 KEY CHANGE
}
'
Context Window Fallbacks
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-D '{
"model": "my-bad-model",
"messages": [
{
"role": "user",
"content": "ping"
}
],
"mock_testing_context_window_fallbacks": true # 👈 KEY CHANGE
}
'
EU-Region Filtering (Pre-Call Checks)
Before call is made check if a call is within model context window with enable_pre_call_checks: true
.
Set 'region_name' of deployment.
Note: LiteLLM can automatically infer region_name for Vertex AI, Bedrock, and IBM WatsonxAI based on your litellm params. For Azure, set litellm.enable_preview = True
.
1. Set Config
router_settings:
enable_pre_call_checks: true # 1. Enable pre-call checks
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/chatgpt-v-2
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
region_name: "eu" # 👈 SET EU-REGION
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo-1106
api_key: os.environ/OPENAI_API_KEY
- model_name: gemini-pro
litellm_params:
model: vertex_ai/gemini-pro-1.5
vertex_project: adroit-crow-1234
vertex_location: us-east1 # 👈 AUTOMATICALLY INFERS 'region_name'
2. Start proxy
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
3. Test it!
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.with_raw_response.create(
model="gpt-3.5-turbo",
messages = [{"role": "user", "content": "Who was Alexander?"}]
)
print(response)
print(f"response.headers.get('x-litellm-model-api-base')")
Custom Timeouts, Stream Timeouts - Per Model
For each model you can set timeout
& stream_timeout
under litellm_params
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-eu
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key: <your-key>
timeout: 0.1 # timeout in (seconds)
stream_timeout: 0.01 # timeout for stream requests (seconds)
max_retries: 5
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key:
timeout: 0.1 # timeout in (seconds)
stream_timeout: 0.01 # timeout for stream requests (seconds)
max_retries: 5
Start Proxy
$ litellm --config /path/to/config.yaml
Setting Dynamic Timeouts - Per Request
LiteLLM Proxy supports setting a timeout
per request
Example Usage
- Curl Request
- OpenAI v1.0.0+
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data-raw '{
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "what color is red"}
],
"logit_bias": {12481: 100},
"timeout": 1
}'
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": "what color is red"}
],
logit_bias={12481: 100},
timeout=1
)
print(response)